

William H.A. BEAUDOT¹, Kenzo SAKURAI^{1,2} 1: Division of Human Informatics, Graduate School of Tohoku Gakuin University, Sendai, Miyagi, Japan 2: Department of Psychology, Tohoku Gakuin University, Sendai, Miyagi, Japan Results To compare the contrast sensitivity function (CSF) measured on different display technologies through different (plo software and hardware techniques that increase luminance resolution (from 8 bits to 16 bits including a quasi-continuous resolution), and discuss the relative advantages and limitations of each solution. Contrast thresholds for 6 spatial frequencies (0.5, 1, 2, 4, 8, 16 cpd) were measured using a staircase method (1-up/3-down) through a discrimination procedure (horizontal/vertical judgment). Each trial consisted in a Gabor patch with a sigma of 2 degs presented for 0.5 seconds at a randomly-selected horizontal or vertical orientation. In the same session, the spatial frequencies were randomly interleaved and a full contrast sensitivity **d** 2.5 *Experimental Setup*: Stimuli presented through Psykinematix v2.0 GPU/Bits# Edition [1] running on a MacBook Pro 15" (Mid-2012) under Mac OSX 10.8.5 with a NVIDIA GeForce GT 650M graphics card. – LCD (MacBook Pro Anti-Glare 6-bit TN LCD Display Model LTN154MT07 from Samsung) All were Gamma-corrected using ColorCal II from CRS with a mean luminance of 60 cd/m² and viewed at a dis-Conclusions (6 bits + temporal dithering) 8 bits (chromatic artefacts) 11.6 bits (lower spatial resolution through 4x4 pixel) 12 bits 14 bits (native) 16 bits (14 bits + temporal dithering) quasi-continuous (through stochastic spatial dithering) low-quality LCD display ! Bandwidth Cutoff **Properties of interest:** Peak Frequency References Sensitivity Peak frequency Cut-off frequency DC Śensitivity Bandwidth Peak sensitivity DC sensitivity Peak Frequency 100 10

Objective

Method

function (CSF) was obtained in less than 10 minutes.

Configurations

Tested Displays:

- CRT (Sony Trinitron GDM-F520)
- Display++ (IPS LCD from CRS)

tance that provides the same Nyquist frequency of 32 cpd.

Stimulus Rendering Methods (provide various luminance resolutions):

- Standard:
- Bit-stealing [2]:
- Spatial dithering [3]:
- Bits# (from CRS):
- Display++ (from CRS):
- Noisy-bit [4]:

CSF Model

The average of 10 CSF measurements for the same subject was fitted with a Difference of Gaussians:

 $CSF(f) = g * (\exp(-\frac{f^2}{h^2}) - a * \exp(-\frac{f^2}{c^2}))$

with 4 free parameters: *g, a*: gains *b*, *c*: space constants

Spatial frequency (cpd)

1. The positive correlation between peak sensitivity and luminance resolution suggests that the **noisy-bit technique** can provide more than **20-bit of luminance resolution**!

2. The **bit-stealing technique appears insufficient** to provide a reliable CSF: peak frequency is under-estimated while cut-off frequency and bandwidth are over-estimated.

3. The **Display++ (16-bit)** and the **noisy-bit** method provide **similar estimates** for the CSF properties.

4. More than 12-bit luminance resolution is required to fully assess the CSF.

5. A reliable CSF can be estimated without relying on a hardware solution by using the noisy-bit method even with a

. Beaudot WHA (2009) Psykinematix: a new psychophysical tool for investigating visual impairment due to neural dysfunctions. Vision: the Journal of the Vision Society of Japan, 21(1):19–32 2. Tyler C.W. (1997) Colour bit-stealing to enhance the luminance resolution of digital displays on a single pixel basis.

Spatial Vision, 10(4):369-377

3. Mulligan J.B. (1993) Methods for spatiotemporal dithering. SID'93 Digest, pp. 155–158 4. Allard R. & Faubert J. (2008) The noisy-bit method for digital displays: Converting a 256 luminance resolution into a continuous resolution. Behavior Research Methods, 40(3):735–743